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§0. Introduction.
A simple, geometric, necessary condition for R-equivalence of map-germs (namely,

equality of discriminants) and for A-equivalence (equivalence of discriminants) is, for a
rather large collection of map-germs, also sufficient, or at least sufficient up to a well-
understood finite ambiguity. For this result to be useful, we need a detailed knowledge
of which map-germs it applies to, and we need to understand the discriminant and its
properties. We address both these needs here.

We will be concerned with Cτ map-germs f : (N,S) −→ (P, y0), with S finite, where N
and P are Cτ manifolds of dimension n and p respectively. Here Cτ means either complex
analytic (τ = C-ω), real analytic (τ = R-ω), or C∞ (τ = ∞).

(0.1) Definition. Cτ map-germs fi : (Ni, Si) −→ (Pi, yi), i = 0, 1, are A-equivalent
if there exists Cτ diffeomorphism-germs r : (N0, S0) −→ N1, with r(S0) = S1, and
l : (P0, y0) −→ (P1, y1) such that l ◦ f0 = f1 ◦ r. They are called R-equivalent if l is the
identity.

(0.2) Definition. The critical set of a Cτ map f : N −→ P is

C = C(f) = {x | rk dxf < p},
where dxf is the derivative of f at x. The discriminant of f is

D = D(f) = f(C(f)).

Critical sets and discriminants are preserved by equivalences; in the situation of (0.1),

r(C(f0)) = C(f1))

and
l(D(f0)) = D(f1)).

In particular, equality of discriminants is a necessary condition for R-equivalence; this is
the “simple geometric condition” we work with.

To describe the class of map-germs for which this necessary condition for R-equivalence
is sufficient, we need to introduce some notation and terminology.

* Partially supported by the National Science Foundation under Grant nos. MCS 80-05361 and MCS

81-00779. Leslie Wilson was a guest at the Mathematics Institute, Aarhus University, while this work was

done

Typeset by AMS-TEX

1



2 ANDREW DU PLESSIS, TERENCE GAFFNEY AND LESLIE C. WILSON

(0.3) Notation and terminology. E = EN will denote the sheaf of Cτ , E-valued
function-germs on N , where E = R or C in agreement with τ . Ea is the stalk of E at
a ∈ N . If N = En, we denote E0 by En and the unique maximal ideal in En by mn. Let
J(f) be the ideal in En generated by the p × p minors of the Jacobian matrix of f , and
let J (f) be the corresponding sheaf of ideals. For any set or set-germ X, I(X) denotes
the ideal of germs which vanish on X; I(X) is the sheaf of ideals of function-germs which
vanish on X. If an analytic variety-germ V has irreducible components V1, . . . , Vr, then a
subvariety W is said to have codimension ≥ c if W ∩ Vi has codimension ≥ c for each i. A
property of an analytic map-germ f : V −→ W is said to hold generically if it holds off a
codimension ≥ 1 subvariety of V . If f is a C∞ map-germ restricted to a set C, we say a
property of f holds generically if it holds on an open dense subset of C.

(0.4) Definition. Suppose f : (N,S) −→ (P, y0) is a Cτ map-germ with S finite. f is
a critical normalization (CN , for short) if J (f)S = I(C)S and f | C : C −→ D is a Cτ

normalization, which means:
(τ = C-ω) Ca is a normal variety for each a ∈ S (see §1) and f |C is finite-to-one and

generically one-to-one.
(τ = R-ω) (f |C)C : CC −→ DC is a normalization and CC = C(fC) (where the

subscript C means “complexification” - see for example [N]).
(τ = ∞) f |C is C∞ equivalent to a R−ω normalization and, for C ′ any representative

of C, dimC ′x = min{dimP − 1,dimN} at each x sufficiently near S.
For more on what a normalization is, see §1. A crucial property of normalizations is

their essential uniqueness. In [GW2], the following statement of this uniqueness is proven:

(0.5) Theorem. Let fi : (Ni, Si) −→ (Pi, yi), i = 0, 1, be critical normalizations with
D(f0) = D(f1). Then there exists a Cτ -diffeomorphism germ r : (N0, S0) −→ (N1, S1),
unique on C(f0), such that

r(C(f0)) = C(f1)

and
f1 ◦ r|C(f0) = f0|C(f0).

In fact, for critical normalizations, equality of discriminants is almost enough to guar-
antee right-equivalence, not merely right-equivalence on the critical sets. However, in the
real case we need to make one additional assumption, which we now explain.

The quadratic differential (or Hessian) d2
xf of f is a quadratic form from the kernel

to the cokernel of dxf (see Chapter 10 of [Br]). Without loss of generality, we may
assume (N,x) = (Rn, 0) and (P, y) = (Rp, 0). Suppose f has rank p − 1 at 0. We
choose an orientation of cok d0f , which is one-dimensional. Then d2

0f has a well-defined
index (the dimension of the space spanned by those eigenvectors corresponding to negative
eigenvalues)—that is, if r, l are Cτ -diffeomorphism-germs of (Rn, 0), (Rp, 0), respectively,
then

d2(l ◦ f ◦ r) = d0ld
2f(d0r|, d0r|),

where d0l : cok d0f −→ cok d0(l ◦ f ◦ r) is the isomorphism induced by d0l, and d0r :
ker d0f −→ ker d0(l ◦ f ◦ r) is the isomorphism induced by restricting d0r.
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In the particular case where n ≥ p and corank d0f = 1, and if α : cok d0f −→ R is a
linear isomorphism, then α ◦ d2

0f is a quadratic form, so has a well-defined index. Indeed,
we see that this index depends only on a choice of orientation (i.e. positive direction) in
cok d0f , and is independent of any choice of coordinates in Rn. Thus it is, once a choice
of orientation has been made, an R-invariant of f .

It is very easy to calculate in local coordinates; a map-germ f : (N,x0) −→ (P, y0) with
dim cok dx0f = 1 is A-equivalent to a map-germ g : (En, 0) −→ (Ep, 0) of the form

g(u1, . . . , uk, y1, . . . , yb, z1, . . . , zc) = (u1, . . . , uk,
b∑
j=1

Q(y) + F (u, z)),

where Q is a non-degenerate quadratic form, and F ∈ mzEu,z; the index of the Hessian of
f is, with the appropriate choice of orientation, the index of Q.

It should perhaps be remarked that the index of the Hessian is not an A-invariant: for
example, the map-germs from (R3, 0) to (R2, 0) given by

(u, y, z) 7→ (u, y2 + z3 + uz),

and
(u, y, z) 7→ (u,−y2 + z3 + uz)

are A-equivalent but not R-equivalent. The signature is A-invariant, but the above exam-
ple shows also that equal signature and equal discriminant does not imply R-equivalence.

(0.6) Theorem. ( [duPW1]). Let fi : (Ni, Si) −→ (Pi, yi), i = 0, 1, be critical normaliza-
tions with D(f0) = D(f1). Then

1. (C-ω) f0 and f1 are right-equivalent;
2. (R-ω or ∞)

a) if n < p or corank dxf0 6= 1 for all x ∈ S0, then f0 and f1 are right-equivalent
b) if n ≤ p and corank dxf0 = 1 for some x ∈ S0, then there exists a bijection

σ : S0 −→ S1 such that σ(S′0) = (S′1) (where S′i = {x ∈ Si : corank dxfi =
1}) and such that, for all x ∈ S′0:

i) Im dxf0 = Im dσ(x)f1 , and
ii) rk d2

xf0 = rk d2
σ(x)f1.

Give cok dxf0 and cok dσ(x)f1 the same orientation for all x ∈ S′0. Suppose
that d2

xf0 and d2
σ(x)f1 have the same index for all x ∈ S′0. Then f0 and f1 are

right-equivalent.

(0.7) Remark. If we replace the condition D(f0) = D(f1) by l(D(f0)) = D(f1) for some
diffeomorphism-germ l, then we easily get from the above theorem necessary and sufficient
conditions for two critical normalizations to be equivalent.

One reason for emphasizing right-equivalence of germs, as we do, is that this more
easily leads to global equivalence theorems. This is because the local right equivalences are
relatively few in number, and hence it is more easy to see when they can be pieced together.
For example, when n < p, the local right equivalences are unique, and hence automatically
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piece together globally (for proper maps which are locally critical normalizations). Global
equivalence theorems have been derived using this approach in [GW2]. The calculation of
the set of local right equivalences between two critical normalizations has been made in
[duPW2].

The question immediately posed by (0.6) is: when is a map-germ a CN? We give an
answer in terms of “weak transversality conditions” which is very useful for calculations
and for relating the notion of a CN to other families of map-germs studied in singularity
theory. We will prove:

(0.8) Theorem. Let f : (N,S) −→ (P, y0) be a Cτ map-germ.

1) (τ = C-ω) f is a critical normalization if, and only if
a) f t {0} on (N − S, S);
b) j1f t all Thom-Boardman singularities off a codimension 2 subset of C;
c) 2j

1f t all multijet Thom-Boardman singularities off a codimension 1 subset
of C.

2) (τ = R-ω) f is a critical normalization if, and only if
a) the complexification fC of f is a C-ω CN ;
b) C(fC) = C(f)C.

3) (τ = C∞) f is a critical normalization if its C has dimension min{p− 1, n} at
each point and it is A- equivalent to an analytic map-germ whose complexification
is a CN .

The result in (0.8.1) is quite satisfactory; it shows that critical normality is a condition
holding in general to complex-analytic map-germs whenever dimP > 2, (and also when
dimN = 1 and dimP = 2).

The results of (0.8.2) and (0.8.3) show that being a CN is not so general in the real
case; but it still follows from them that many of the germs commonly considered in sin-
gularity theory are critical normalizations and so are determined by their discriminants:
this includes all map-germs multi-transverse to the first order Thom-Boardman varieties
Σi which are A-equivalent to analytic germs, and so in particular all C0-stable germs A-
equivalent to analytic germs (by results of [duPWa]), and all C∞-stable germs (a result
previously obtained by Wirthmüller in [Wir]). The Lagrangean stable map-germs (see
[Ar1]) are also CNs. Also, all A-finite map-germs f : (N,S) −→ (P, y0) with no point of S
isolated in C(f) and dimP > 2 are CN ; indeed, all such ∞-C0-A-determined map-germs
A-equivalent to an analytic germ are CNs (by results of du Plessis “in preparation”).

While Theorem (0.6) is fairly general, it is still not as general as we would like. For
example, if p = 1, critical normalizations are just Morse functions and (0.6) is just the
Morse Lemma. Golubitsky and Guillemin [GG] show that A-finite function-germs f, g
are R-equivalent iff there is an algebra isomorphism En/J(f)2 ∼= En/J(g)2 sending the
projection of f to that of g; a simpler proof is given in [duPW1].

When p = 2, those finitely A-determined germs f which have rank 1 and are transverse
to Σn−1 are critical normalizations, whereas all other finitely A-determined germs in these
dimensions are not. Indeed, such map-germs are not determined by their discriminants,
even in the A-finite C-ω case, as the following examples show.
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(0.9) Examples.
1). The map-germs (E3, 0) −→ (E2, 0) given by

(u, x, y) 7→ (u, x3 + y3 + 3u5(x− y)),

(u, x, y) 7→ (u, x2 + 4y5 + 5u6y)

both have discriminant t4 + 64u30 = 0.
For an example whose discriminant in the real case is not a point, we need to work

somewhat harder:
2). The map-germ

(u, x, y) 7→ (u, x3 + y3 + 3u5(ax+ by))

has discriminant
t4 + 8(a3 + b3)u15t2 + 16(a3 − b3)2u30 = 0,

while
(u, x, y) 7→ (u, x2 + y5 + cu6y + du3y3)

has discriminant

3 · 125t4 + (108d5 − 900cd3 + 2000c2d)u15t2 + (256c5 − 128c4d2 + 16c3d4)u30 = 0,

which are equal if

3 · 125 · 8(a3 + b3) = 108d5 − 900cd3 + 2000c2d, and

3 · 125 · 16(a3 − b3)2 = 256c5 − 128c4d2 + 16c3d4.

These two equations have many real solutions with a, b of the same sign.
3). The map-germ (E2, 0) −→ (E2, 0) given by

(x, y) 7→ (−x2 + y3,−y2 + x3)

and the map-germ (E2, 0) t (E2, 0) −→ (E2, 0) given by

(x, y) 7→ (x,
1
2
y3 +

3
2
xy)

on the first component, and by

(x, y) 7→ (
1
2
y3 +

3
2
xy, x)

on the second, have the same discriminant, namely

(s2 + t3)(s3 + t2) = 0.
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4). The map-germs (E2, 0) −→ (E2, 0) given by

(x, y) 7→ (x,−1
6
y6 + xy),

(x, y) 7→ (xy,
1
3
x3 +

1
2
y2)

both have discriminant
55s6 − 65t5 = 0.

As these examples show, in the case n ≥ p = 2, the discriminant cannot in general
predict the number of source points, or the rank, or in the cokernel rank one case, the rank
of the Hessian, even for C− ω A-finite map-germs. It turns out that a further invariant is
required, the so-called conductor ideal suffices ([duP3]), but carries more information than
necessary ([duP4]); we refer to these papers for further information.

Although most map-germs in the case n ≥ p = 2 are not CN ’s, still most map-germs
are CS−FST (critical simplification of finite singularity type; see (2.1) for the definition);
and although a CS-FST is not determined by its discriminant, a family of CS-FST germs
is (this is proved in [BduPW]). The CS-FST map-germs are characterized by an analogue
of Theorem (0.8), in which condition (1b) is changed by replacing “codimension 2” by
“codimension 1”.

By work of Gaffney ([Ga]), if n = p = 2, a family of CS-FST map-germs is determined
up to C0-A equivalence by the C0-equivalence type of its discriminant. This relates to an
important question: since the analytic type of the discriminant determines the analytic
type of the map-germ (for CN ’s, and for CS-FST ’s if we deal with families), to what
extent does the topological type of the discriminant determine the topological type of the
map-germ (or family of map-germs)?

Another question posed by (0.8) in the C∞ case is to what extent the requirement of
A-equivalence to an analytic germ might be relaxed. It turns out that it can be avoided
completely for cokernel rank one map-germs f : (N,S) −→ (P, y0), dimN > dimP ,
transverse to Σn−p+1; such map-germs with f |C(f) generically one-to-one are determined
by their discriminant. This is described in [duP1], together with the rather different line
of development [Hö], [Te], [Ph] and [duPW1] leading to it.

The preceding discussion of possibilities of extensions to the theory should not be allowed
to obscure the fact that it is already of very wide relevance. It allows us to concentrate
on properties of the discriminant when studying R- or A-equivalence of many map-germs.
It seems that both geometric and algebraic properties are relevant. A geometric use of
determining discriminants, to describe maximal compact or reductive subgroups of A-
symmetries of a CS is to be found in [duPW2].

In this paper we concentrate on the algebraic properties of discriminants. In particular,
we give recipes for finding the equations of the discriminant, at least in the cases where
n ≥ p−1. In the process we see that these equations appear as the determinants of maximal
minors of a matrix (a “discriminant matrix”) very closely related to the Ae-tangent space,
setting up a theory allowing much A-classification. This will be exploited in [duP5].

We would like to acknowledge our indebtedness to ideas from other workers in this area.
In particular, the survey article of Teissier [Te] has had a very considerable influence, but
also ideas from Arnol’d [Ar2], Saito [Sa] and Wirthmüller [Wir] have been useful to us.
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Since the announcement of the results of this article in [GW1], a number of other authors
have written independently on various aspects of the algebraic geometry of discriminants;
we cite Bruce [Bru], Mond/Pellikaan [MP], Looijenga [Lo] and Terao [Ter]. We have also
profited from their work.

This paper is organized as follows. In §1, we provide some background material in
commutative algebra. In §2, we exploit this to characterize critical normalizations in
terms of “weak transversality conditions” (i.e. we prove Theorem (0.8)), and we define
and similarly characterize some other map-germ classes. A number of the results in this
section appear, usually with more restrictive hypotheses, in Chapter 5 of [Lo]. In §3,
we give recipes for calculating discriminants and discriminant matrices, prove a result
on the naturality of these discriminant matrices, and discuss relations to A-classification
questions. In particular, we prove a generalization of a theorem of Damon about the
A-codimension of a map-germ ([Da]).

§1 Some commutative algebra.
In this section, R will always be a commutative, Noetherian local ring, I an ideal of R,

m the maximal ideal of R, and M a finitely generated R module.

(1.1) Definitions.
1) A finite free resolution of M of length l is an exact sequence

0 −→ Rkl −→ · · · −→ Rk1 −→ Rk0 −→M −→ 0.

The homological dimension of M , denoted hdRM , is the minimum of the lengths of all
finite free resolutions of M . If no such finite free resolution exists, hdRM = ∞. (hdRM
is equal to the analogously defined projective dimension of M ; see for example the proof
of Theorem 8 of Chapter IV of [Se]).

2) A sequence a1, . . . , ak of elements of I is called an M -sequence in I if, for each i
between 1 and k, ai is not a zero-divisor of M/(a0, . . . , ai−1)M , where a0 = 0. The M -
sequence a1, . . . , ak in I is maximal if there does not exist any b ∈ I such that a1, . . . , ak,
b is an M -sequence. It is a fact (see (15.B) of [Mats]) that all maximal M -sequences in I
have the same length; this length is called the I-depth of M , and is denoted depthR(I,M).
The depth of M is depthR(m,M), abbreviated depthR(M).

3) A chain P0 ⊂ P1 ⊂ · · · ⊂ Pr of prime ideals in R, with Pi 6= Pi+1 for all i, is said
to have length r. If P is a prime ideal in R, the height of P , denoted htP , is the upper
bound of the lengths of the chains of prime ideals contained in P . The height of I is the
lower bound of the heights of all prime ideals containing I. The dimension of R, denoted
dimR, is the height of m. The dimension of M is the dimension of R/ annM , where
annM = {r ∈ R : rM = 0} is the annihilator of M .

(1.2) Proposition. (Proposition 12 of Chapter IV of [Se]).
Suppose f : R −→ S is a homomorphism of local rings making S into a finitely gener-

ated R module. If M is a finitely generated S module, then depthRM = depthSM and
dimRM = dimSM .

(1.3) Definition and remarks R is a regular local ring if m is generated by dimR
elements. By Proposition 9 of Chapter IV of [Se], R is regular if, and only if, hdR(R/m) is
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finite. In this case, hdR(M) is finite for every finitely generated R-moduleM . Furthermore,
depthRR = dimR = hdR(R/m).

(1.4) Proposition. (Proposition 21 of Chapter IV of [Se].
If R is a regular local ring and M is a finitely generated R-module, then hdR(M) +

depthR(M) = dimR.

(1.5) Remarks. En (τ = R-ω or C-ω) is a regular local ring of dimension n. Suppose I is
an ideal of En, R = En/I, and V = V (I). Let dimV be the set-theoretic dimension of V
(it is the largest d such that there exist regular points of dimension d of V arbitrarily near
0); if the irreducible components of V are V1, . . . , Vr, then dimV is the largest dimension
of the Vi’s. When τ = C-ω, dimR = dimV and ht I = codV = n− dimV .

(1.6) Definition. M is Cohen-Macaulay if dimM = depthRM . R is a Cohen-Macaulay
ring if it is Cohen-Macaulay as an R-module (that is, htm = depthR(m,R)).

(1.7) Proposition. Suppose R is a regular local ring. Let M be a finitely generated R
module. Then M is Cohen-Macaulay if, and only if, hdRM = ht(annM). In particular, if
τ = C-ω and R = En, then M is Cohen-Macaulay if, and only if, hdRM = codV (annM).

Proof. M is Cohen-Macaulay as an R-module if, and only if, depthRM = dimM =
dimR/ annM = dimR − ht(annM) (by I.6.12 of [To]). By (1.4), hdR(M) = dimR −
depthRM . �

(1.8) Corollary. Suppose R is a regular local ring and M is a finitely generated R module
with dimM = dimR. Then M is Cohen-Macaulay if, and only if, M is a free R-module.
In particular, R itself is Cohen-Macaulay.

(1.9) Proposition. (Theorem 136 of [K]).
If R is Cohen-Macaulay, then for every ideal I, ht I = depthR(I,R).

(1.10) Corollary. If R = En, τ = C-ω, then depthR(I,R) = codV (I).

(1.11) Definition. For each a ∈ M , let ann(a) = {r ∈ R : ra = 0}. Those ideals ann(a)
which are prime are called associated prime ideals of M . The set of these is denoted
assM . (The union of the associated primes of M is the set of zero divisors of M , and the
intersection of the associated primes is annM). M is unmixed if dimR/P = dimM for all
P ∈ assM .

(1.12) Proposition. (Proposition 13 of Chapter IV of [Se]). If M is Cohen-Macaulay,
then M is unmixed.

Suppose ϕ : Rn −→ Rp is an R-module morphism; ϕ can be interpreted as a matrix.
Let I(ϕ) be the ideal in R generated by the p× p minors of ϕ.

(1.13) Proposition. (Corollaries 2.5 and 2.7 of [BR]).

1) depthR(I(ϕ), R) ≤ n− p+ 1
2) If depthR(I(ϕ), R) = n− p+1, then hdR cok Λkϕ = n− p+1 for all k, 1 ≤ k ≤ p.
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The cases of most interest to us are cok Λ1ϕ = Rp/ϕ(Rn) and cok Λpϕ = R/I(ϕ).
Since R is Noetherian, M finitely generated implies M is finitely presented, i.e., there

exists an exact sequence
Rn

ϕ−→ Rp −→M −→ 0.

The 0th Fitting ideal of M is defined to be F0(M) = I(ϕ). This ideal does not depend on
the presentation chosen.

(1.14) Proposition. Suppose R is a regular local ring, M is a finitely generated R-
module, depthRM = dimR−1 and annM 6= 0. Then F0(M) is generated by one element,
which is not zero.

Proof. (from [Te], bottom of page 614). By (1.4), hdRM = 1, so there is a resolution

0 −→ Rs
ψ−→ Rr −→M −→ 0.

Thus s ≤ r. Since annM 6= 0, M ⊗R K = 0, where K is the field of fractions of R. Thus
ψ ⊗ 1K : Ks −→ Kr is surjective, so s ≥ r. Thus s = r and F0(M) = (detψ)R. �

Let M be a coherent sheaf of E modules, τ = R-ω or C-ω. Let Pa,i’s be the associated
primes of Ma and let Va,i = V (Pa,i). The Va,i’s are not necessarily the same as the
irreducible components of (suppM)a, even in the case E = C and M = E/I. For example,
let n = 2 and let I be the sheaf generated by x2 and xy in E . The associated primes are
xE and (x, y)E , so V0,1 = {y − axis} and V0,2 = {0}. Such embedded primes do not occur
if Ma is unmixed.

The proof of the next proposition is a simplification of the proof of Malgrange’s Theorem
on M-dense sets (see VI.2.4 of [To]), which is the analogous result for τ = ∞.

(1.15) Proposition. Suppose ξ is a section in M near a. Then ξ(a) = 0 if, and only if,
for each i and any representative Ṽa,i of Va,i, there exists in Ṽa,i a sequence xj −→ a such
that ξ(xj) = 0 for all j.

Proof. “Only if” is trivial, since ξ(a) = 0 ⇒ ξ(x) = 0 for all x near a, by coherence of
M. To prove “if”, we assume ξ = 0 on X, the germ at a of a set satisfying: for all i,
X ∩ Va,i 6= ∅.

By the reduced primary decomposition of 0 in Ma (see (I.3.2) of [To]), there exist
submodules Ma,i of Ma such that ∩Ma,i = {0} and the Ma/Ma,i are Pa,i-coprimary
(this means that, for each r ∈ Pa,i, there is an s such that rs · Ma ⊂ Ma,i — i.e.,
Pa,i =

√
ann(Ma/Ma,i), and for each r /∈ Pa,i, r· : Ma/Ma,i −→Ma/Ma,i as injective.)

If we can show ξ(a) ∈Ma,i for all i, then ξ(a) = 0 and we are done.
Thus we are reduced to proving the Proposition in the case Ma is Pa-coprimary. Since

Pa is the only associated prime of Ma, our assumption is the ξ = 0 on X, the germ of a
set at a such that X ∩ Va 6= ∅, where Va = V (Pa).

There exists a composition series (see (I.3.8) of [To]): 0 = Na,0 ⊂ Na,1 ⊂ · · · ⊂ Na,p+1 =
Ma such that Na,i+1/Na,i ∼= Ea/Qa,i, where Qa,i is a prime ideal containing Pa.

Let Ni (resp. Gi, P) be coherent subsheaves of M (resp. E) satisfying (Ni)a = Na,i,
(Qi)a = Qa,i, (P)a = Pa. By coherence, Ni+1/Ni ' E/Qi and Qi ⊃ P near a.
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Suppose we have proven that there is a gi+1 ∈ E such that (gi+1)a /∈ Pa and (gi+1ξ)a ∈
Na,i+1. If Qa,i 6= Pa, then there is an h ∈ E with ha ∈ Qa,i \ Pa. Since there is an
isomorphism Φ : Ni+1/Ni −→ E/Qi, Φ−1 given by multiplication, (hgi+1ξ)a ∈ Na,i. Let
gi = hgi+1.

Now suppose Qa,i = Pa. Since Pa is prime, dim(Ex/Px) is a constant d for x near a (see
(II.7.2) of [To]). Let K be the coherent sheaf generated by P and ζ, where ζ = Φ(gi+1ξ).
For x ∈ X, ξx = 0, so ζx ∈ (Qi)x = Px, so dim(Ex/Kx) = d. By a Theorem of Tougeron
(see (II.5.3) of [To]), x 7−→ dim(Ex/Kx) is upper-semi continuous. Thus dim(Ea/Ka) ≥ d.
On the other hand, Pa prime and Ka ⊃ Pa implies dim(Ea/Ka) ≤ d with “=” if and only
if, Ka = Pa. Thus ζa ∈ Pa, i.e., (gi+1ζ)a ∈ Na,i. Let gi = gi+1.

Thus there is a g = g0 with ga /∈ Pa and (gζ)a = 0. But multiplying by ga induces an
injective map from Ma to Ma (since Ma is Pa-coprimary). Thus ζa = 0. �

(1.16) Definition. Ea/Ia is said to be reduced (if τ = C-ω) or real-reduced (if τ = R-ω)
if Ia = I(V (Ia)).

Applying (1.15) to M = E/I, we immediately have:

(1.17) Corollary. (Criterion for being reduced or real-reduced). Ia = I(V (Ia)) if, and
only if, for each i there exists in Ṽa,i a sequence xj −→ a such that Ixj = I(V (Ixj )) for
all j.

(1.18) Corollary. (τ = C-ω)
Suppose Ea/Ia is Cohen-Macaulay. Then Ea/Ia is reduced if, and only if, Ex/Ix is

reduced at all regular points of V (Ia) if and only if, Ex/Ix is reduced at all x in a Zariski
dense set of regular points of V (Ia).

(1.19) Definition. R is normal if it is an integral domain and is integrally closed in its
field of fractions. An analytic variety V is normal if En/I(V ) is.

(1.20) Proposition. (See II.3.7, II.7.9 and II.7.11 of [To]).
Suppose V is a complex analytic variety and is equidimensional (all its irreducible com-

ponents have the same dimension). Then V is normal if, and only if, both of the following
hold:

1) the singular set of V has codimension ≥ 2 in V
2) cod{x|hdEx(Ex/I(Vx)) > i+ codV } ≥ i+ 3, ∀i ≥ 3

(where, by convention, cod ∅ = ∞).

Let RV = En/I(V ). By (1.7), RV is Cohen-Macaulay if, and only if, codV = hdEn
RV .

(1.21) Corollary. (τ = C-ω) Suppose RV is Cohen-Macaulay. Then V is normal if, and
only if, its singular set has codimension ≥ 2 in V .

§2 Critical behavior and weak transversality conditions.
In this section, we will define several types of critical behavior of map-germs, and then

demonstrate how these types of critical behavior are related to transversality conditions.
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(2.1) Definitions. Let f : (En, 0) −→ (Ep, 0) be a Cτ map-germ, with τ = ∞, R-ω or
C-ω.

1) For n ≥ p, f has non-degenerate critical set if J(f) = I(C) and dimC = p− 1; for
n < p, we will consider all map-germs to have non-degenerate critical set.

2) f is generically finite-to-one on its critical set if it has non-degenerate critical set
and f |C has discrete fibers generically (off of a codimension 1 subvariety of C, the
fibers of f are discrete sets).

3) f is a critical simplification (CS) if it has non-degenerate critical set and is gener-
ically one-to-one on its critical set.

4) f is of finite singularity type (FST ) if En/J(f) is finitely generated as an f∗Ep
module.

By the Malgrange Preparation Theorem, f is FST if, and only if, En/(J(f)+f∗mpEn)
is a finite dimensional E vector space; in fact, by Nakayama’s Lemma, α1, . . . , αk generate
En/J(f) as an f∗Ep module if, and only if, their projections generate En/(J(f)+f∗mpEn)
as an E vector space. A complex analytic f is of FST if, and only if, f |C(f) is finite-to-one
if, and only if, f−1(0) ∩ C(f) = {0} if, and only if, f t {0} on the germ of En − {0} at
{0}. Thus being of FST is a “weak transversality condition”. If n ≥ p and f is FST , then
dimC(f) = dimD(f) = p− 1.

The concept of a critical normalization CN was defined in (0.4). Certainly, CN ⇒
CS ⇒ generically finite-to-one on its critical set ⇒ non-degenerate critical set. Also,
CN ⇒ FST .

In case p = 1, f has non-degenerate critical set if, and only if, J(f) = mn, i.e., f
has a non-degenerate critical point at 0. Then f is trivially a CN as well. Theorem 0.6
in this case is simply the Morse Lemma. If n < p, then C is the entire domain, and
critical normalizations are the same as normalizations. Theorem (0.6) is in this case the
Uniqueness of Normalization Theorem, well-known in the analytic case, proved in [GW2]
in the C∞ case (we will point out at the end of this section that the present definition of
normalization implies that of [GW2]).

We first present several examples to clarify the concepts in (2.1). These examples are
valid for τ = ∞, R-ω or C-ω. We will not prove the assertions made in these examples;
the proofs are easy once one has the results on transversality conditions proved later in
this section.

(2.2) Examples (in each of the following, we intend f to be the germ at 0 of the indicated
mapping).

1) f(u, z) = (u, z3) is FST but has degenerate critical set.
2) f(v, x) = (v, vx) has non-degenerate critical set but is not generically finite-to-one

on its critical set.
3) f(x, y) = (x2, y2) is generically finite-to-one on its critical set and FST , but is not

a CS.
4) f(v1, v2, x1, x2) = (v1, v2, v1x1 +v2x2 +xm1 x

n
2 ), m ≥ 1, n ≥ 2, is a CS but not FST

(in fact, D(f) is not even the germ of a closed set).
5) Any finitely A-determined germ from En to E2 which is either of rank 0 at 0, or

is of rank 1 but is not transverse to Σn−1 at 0, is a CS but not a CN . Two such
map-germs are f(u, z) = (u, u2z − z3) and g(x, y) = (x2 + y3, y2 + x3).
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The main results of [duPW2] applied to map-germs which were CS’s but not necessarily
FST . However, in the present paper we will only deal with CS’s which are also FST , and
we will refer to these as CS-FST map-germs.

Next we recall some results from [duPW1] which we will need. Lemmas (2.3) and (2.4)
are part of Lemma (1.2) of [duPW1].

Let Ekn denote the k-tuples of elements of En (which we sometimes identify with Cτ

map-germs from (En, 0) to Ek).

(2.3) Lemma. For any f ∈ Epn, J(f) ⊆ ann(Epn/dfE
n
n) ⊆ I(C(f)).

(2.4) Lemma. If f ∈ Epn (n ≥ p) has rank d0f < p− 1, then J(f) ⊂ m2
n and J(f)Epn ⊂

df(mnE
n
n).

The following is (3.1) of [duPW1]:

(2.5) Lemma. Suppose f ∈ Epn (n ≥ p) has rk d0f = p− 1. Then Cτ coordinates can be
chosen which put f in the form

f(u, v, x, y, z) = (u, v, f ′(u, v, x, y, z))

where (u, v, x, y, z) = (u1, . . . , uq, v1, . . . , vr, x1, . . . , xr, y1, . . . , ys, z1, . . . , zt), with

f ′(u, v, x, y, z) =
r∑
i=1

vixi +
s∑
j=1

± y2
j + F (u, x, z)

and with F ∈ m(x,z)m
2
(u,x,z) (we will only use that F ∈ m3

n and doesn’t depend on y).

Note that d2
0f can be identified with

s∑
j=1

± y2
j .

We denote the Thom-Boardman singularities by ΣI , I a multiindex (see for example
[Math1]). In particular, j1f(x) ∈ Σi means that dim ker dxf = i. We write j2f(x) ∈ Σit if
j1f(x) ∈ Σi and j1f tx Σi. The following is part of (3.2) of [duPW1].

(2.6) Lemma. Suppose f ∈ Epn, n ≥ p. The following are equivalent:

1) j2f(0) ∈ Σn−p+1
t ;

2) C is a manifold-germ of dimension p− 1 and I(C) = J(f);
3) f can be expressed in Cτ local coordinates as:

f(u, v, x, y) = (u, v,
r∑
i=1

vixi +
s∑
j=1

± y2
j + F (u, x)), F ∈ m3

n.

The next result is (5.2) of [duPW1].

(2.7) Lemma. If C is a nonempty manifold-germ and J(f) = I(C), then it is not possible
to have dimC < p− 1.

It is however possible to have dimC > p− 1.
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(2.8) Example f(u, y, z) = (u, y2) is a map-germ with C a manifold-germ of dimension
2 and I(C) = J(f). Of course, any map-germ with rank df < p everywhere satisfies
I(C) = J(f) = {0}.

(2.9) Lemma. Supose f ∈ Epn, n ≥ p. The following are equivalent:

1) dimE En/(J(f) + f∗mpEn) = 1;
1′) dimE E

p
n/(df(Epn) + f∗mpE

p
n) = 1;

2) j2f(0) ∈ Σn−p+1
t and f |C is an immersion-germ;

3) j2f(0) ∈ Σn−p+1,0;
4) f can be expressed in Cτ local coordinates as

f(u, x) = (u,−x2
1 · · · − x2

i + x2
i+1 + · · ·+ x2

n−p+1)

for some i (i = 0 in case E = C).

Proof. This is (3.4) of [duPW1], except that condition (1′) was not stated there. An easy
calculation shows that (4) implies (1′). On the other hand, if (1′) holds, then f must have
corank 1, as shown in the proof of (3.4) of [duPW1]. If f is any map-germ of corank 1,
then we can see from the normal form of (2.5) that

dimE E
p
n/(df(Epn) + f∗mpE

p
n) = dimE En/(J(f) + f∗mpEn). �

Define EC to be En/J(f) and MC to be cok df = Epn/dfE
n
n . For the next several results,

we will restrict our attention to the complex analytic case: f : Cn, 0 −→ Cp, 0 is a complex
analytic map-germ with n ≥ p.

(2.10) Proposition. (C-ω).
In all cases dimC ≥ p− 1. If dimC = p− 1, then EC and MC are Cohen-Macaulay as

either En or EC modules.

Proof. In (1.13), let ϕ = df and k = p or 1. Then I(ϕ) = J(f) and, by (1.10), codC =
depthEn

(J(f), En) ≤ n− p+ 1. Thus dimC ≥ p− 1.
If dimC = p − 1, (1.13.2) and (2.3) imply that hdEn EC = hdEn(MC) = n − p + 1 =

n− dimEC = n− dim(En/ ann(MC)). Thus, by (1.7), EC and MC are Cohen-Macaulay
as En modules and, by (1.2), as EC modules. �

(2.11) Theorem. (C-ω). f has non-degenerate critical set if, and only if, j2f ∈ Σn−p+1
t

off a codimension ≥ 1 subvariety of C.

Proof. By (2.10), dimC ≥ p− 1. But dimC = p− 1 if either f has non-degenerate critical
set (by definition) or if j2f ∈ Σn−p+1

t generically (for if dimC > p − 1, there would be
points of C of dimension greater than p− 1 at which j2f ∈ Σn−p+1

t , contradicting (2.6)).
Thus, in either case, EC is Cohen-Macaulay by (2.10). Thus f has non-degenerate critical
set if, and only if, j2f ∈ Σn−p+1

t generically, by (1.18) and (2.6). �
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(2.12) Proposition. (C-ω). Suppose f has non-degenerate critical set. Then f is gener-
ically finite-to-one on its critical set if, and only if, C −Σn−p+1,0(f) is a codimension ≥ 1
subvariety of C.

Proof. We will prove “only if”, “if” being trivial.
Using (2.10.1), it is easy to see that C − Σn−p+1,0(f) is an analytic variety.
Let F be any representative of f . Since J (F ) and I(C(F )) are finitely generated, hence

coherent sheaves of ideals, the set of points at which their stalks are unequal is a subvariety.
The set of points at which dimC(f)x > p−1 is also a subvariety. Thus the set of points at
which Fx has degenerate critical set is a subvariety. Thus there is an open neighborhood
of 0 at each point x of which Fx has non-degenerate critical set; we henceforth restrict F
to this neighborhood.

Now assume f is generically finite-to-one on its critical set. We can assume F |C(F )
has discrete fibers off a codimension ≥ 1 subvariety of C(F ). If the Proposition were not
true, we could find an open subset U of C(F )−Σn−p+1,0(F ) such that U is a manifold of
dimension p− 1. By (2.9), F |U has rank less than p− 1 at each point of U . Shrinking U
if necessary, we may assume F |U has constant rank k < p − 1. But then F |U is locally
equivalent to a projection to Ek, so the fibers have positive dimension, contradicting the
hypothesis. �

If n < p, a similar argument shows that f is generically finite-to-one on its critical set
if, and only if, f is generically an immersion.

(2.13) Lemma. (C-ω). f has non-degenerate critical set with EC normal if, and only if,
j2f ∈ Σn−p+1

t off a codimension 2 subvariety of C.

Proof. Follows from (2.11), (2.10), (1.21) and (2.6). �

An immediate consequence is:

(2.14) Proposition. (C-ω). Suppose f is FST . Then f is a CN if, and only if, j2f ∈
Σn−p+1
t off a codimension 2 subvariety of C and f |C is generically one-to-one.

The C-ω case of Theorem (0.8) is merely a rephrasing of this Proposition.
For the next several results, we need to consider germs at a finite set. Let f : (Cn, S) −→

(Cp, {y}), n ≥ p, S = {x1, . . . , xs}, be analytic. Suppose f is FST , that is f |C is finite-to-
one, where C = C(f). Let fi be the germ of f at xi. Then Ci = C(fi) and D = f(C) are
variety-germs of dimension p − 1. Let EC denote ES/J (f)S and let Ep denote Ey. Then
EC is a finite Ep module, so has a Fitting ideal F0(EC) ⊂ Ep (see the definition preceding
(1.14)), and V (F0(EC)) = D. Let ED = Ep/F0(EC). Similarly, MD = Ep/F0(MC).

(2.15) Proposition. (C-ω). Under the assumptions and with the notation of the above
paragraph:

1)ED is Cohen-Macaulay and F0(EC) is generated by some ϕ = ϕ1 · · ·ϕs, ϕi ∈ mri
p ,

where ri = dimC Exi/(J (f)xi + f∗i mpExi).

2)MD is Cohen-Macaulay and F0(MC) is generated by some ϕ = ϕ1 · · ·ϕs, ϕi ∈ m
r′i
p ,

where r′i = dimC Epxi
/(dfEnxi

+ f∗i mpEpxi
) = Ke-cod(fi).
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Proof. We will prove (1); the proof of (2) is identical. By (2.10), ECi
is Cohen-Macaulay

as an ECi module, i.e.,
depthECi

ECi = dimECi = p− 1.

By (1.2), depthEp
ECi = p − 1. If α ∈ Ep is a nonzero function germ which vanishes on

f(Ci), then α ◦ f vanishes on Ci, so αk ◦ f ∈ J(fi) for some k by the Nullstellensatz. Thus
annEp ECi 6= 0.

Suppose ri = dimC Exi
/(J(fi) + f∗i mpExi). By the Malgrange form of the Preparation

Theorem, there exist gi,1, . . . , gi,ri ∈ Exi which generate ECi as an f∗i Ep module. Then

πi : Eri
p −→ EC sending (α1, . . . , αri) to

ri∑
j=1

(αj ◦ fi)gi,j is surjective. By the proof of

(1.14), there is an Ep module map Φi such that

0 −→ Eri
p

Φi−→ Eri
p

πi−→ ECi −→ 0

is exact, and ϕi = detΦi generates F0(ECi
). Now gi,1, . . . , gi,ri

form a basis of Exi/(J(fi)+
f∗i mpExi) as a C vector space. Suppose πi(α1, . . . , αri) = Σ(αj◦fi)gi,j = 0. Then the linear
independence of the gi,j implies that each αj(0) = 0. Thus each entry of Φi (interpreted
as a matrix) is in mp, so detΦi ∈ mri

p .
Extend gi,j to be the germ of the identically zero function at each xk 6= xi. Relabel

gi,1, . . . , gs,rs as h1, . . . , hr, r = r1 + · · ·+ rs. The hi’s form a basis of ES/(J(f)+ f∗mpES)
as a C vector space. Clearly we have an exact sequence

0 −→ Erp
Φ−→ Erp

π−→ EC −→ 0 ,

where Φ is the direct sum of Φi’s. Thus ϕ = detΦ = ϕ1 · · ·ϕS ∈ mr
p and generates F0(EC)

as desired. �

From (2.15) and (2.9), we get:

(2.16) Corollary. (C-ω). Suppose f : U ⊂ Cn −→ Cp is finite-to-one on C(f), n ≥ p.
Let D = f(C(f)). Then EDy is reduced and Dy is nonsingular if, and only if, f−1(y) ∩
C(f) = {x} for some x and j2f(x) ∈ Σn−p+1,0.

From (1.18), (2.15) and (2.16), we immediately get:

(2.17) Corollary. (C-ω). Suppose f is FST . Then f is a CS if, and only if, ED is
reduced.

Note that ED is not reduced for the map in Example (2.2.3).
Next we take up the comparison of the C-ω and R-ω cases. Suppose f : (Rn, 0) −→

(Rp, 0), n ≥ p, is analytic. Let fC : (Cn, 0) −→ (Cp, 0) be its complexification. Let CC
denote the complexification of C = C(f) (see for example [N]). Let En denote the analytic
germs from (Rn, 0) to R and En(C) those from (Cn, 0) to C.
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(2.18) Proposition. (R-ω). f has non-degenerate critical set if, and only if, fC has
non-degenerate critical set and CC = C(fC) if, and only if, cod(C − Σn−p+1

t (f)) ≥ 1 and
CC = C(fC).

Proof. Clearly J(fC) = J(f)En(C) and I(CC) = I(C)En(C). Suppose I(C) = J(f). Then
I(CC) = J(fC), so CC = C(fC) and I(C(fC)) = J(fC).

Conversely, suppose CC = C(fC) and I(C(fC)) = J(fC). Then

I(C)En(C) = I(C(fC)) = J(fC) = J(f)En(C).

Thus

I(C) = (I(C)En(C)) ∩ En(R)

= (J(f)En(C)) ∩ En(R) = J(f) .

Of course, dimC = dimC(fC) if CC = C(fC). Thus f has non-degenerate critical set
if, and only if, fC has non-degenerate critical set and CC = C(fC).

Again suppose CC = C(fC). Then, for each irreducible component V of C(fC), V ∩Rn
is an irreducible component of C; for each irreducible component of C, CC is an irreducible
component of C(fC). Thus cod(C−Σn−p+1

t (f)) = 0 if, and only if, C−Σn−p+1
t (f) contains

an irreducible component of C if, and only if, C(fC)−Σn−p+1
t (fC) contains an irreducible

component of C(fC) if, and only if, cod(C(fC) − Σn−p+1
t (f)) = 0 if, and only if, fC has

degenerate critical set. �

(2.19) Proposition. (R-ω).
1) Suppose f has non-degenerate critical set. Then f is generically finite-to-one on

its critical set if, and only if, C − Σn−p+1,0(f) is a codimension ≥ 1 subvariety of
C.

2) f is generically finite-to-one on its critical set if, and only if, fC is generically
finite-to-one on its critical set and CC = C(fC).

3) f is a CN if, and only if, fC is a CN and CC = C(fC).

Proof. Suppose f has non-degenerate critical set; so C has dimension p−1 and CC = C(fC).
1) Let F be a representative of f such that FC has non- degenerate critical set at each

point. The regular points of dimension p − 1 of C(F ) form a nonempty open subset of
C(F ). At each such point x, C(Fx)C is a p− 1 dimensional manifold contained in C(FC)x,
which is also p−1 dimensional. The singular set of C(FC) is of dimension less than p−1, so
there exist points x such that C(Fx) and C(FC)x are p− 1 dimensional manifolds; at such
points C(Fx)C = C(FC)x. By (2.18), Fx has non-degenerate critical set at these points.
Now one can repeat the proof of (2.12).

2) Let S (respectively SC) be the subvariety of C (respectively CC) of non-Σn−p+1,0

points. Certainly SC ∩ Rn = S (does SC = SC?). Thus fC is not generically finite-to-one
on its critical set if, and only if, SC contains an irreducible component of CC if, and only if,
S contains an irreducible component of C if, and only if, f is not generically finite-to-one
on its critical set.

3) By definition, f |C : C −→ D is a R-ω normalization if, and only if, (f |C)C :
CC −→ DC is a C-ω normalization. If CC = C(fC), then this holds if, and only if,
fC | C(fC) : C(fC) −→ D(fC) is a normalization. The result then follows from (2.18). �
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(2.20) Corollary. If fC is a CS and C(f)C = C(fC), then f is a CS.

The converse of (2.20) does not hold, as Example (2.21.2) shows.

(2.21) Examples
1) f(u, z) = (u, z4 + u2z2) is one-to-one on C(f) and has only fold singularities on

C(f)− {0}; in fact fC is FST -CS; but C(fC) 6= C(f)C, so J(f) 6= I(C(f)) (f has
degenerate critical set).

2) f(x, y) = (x2, y3 + xy) is a CS and C(f)C = C(fC), but fC is not a CS.
Now we will consider the C∞ case. E denotes the sheaf of germs of C∞ functions on

Rn. A differentiable sheaf M over an open set Ω ⊆ Rn (i.e., a sheaf of E-modules with
unit) is quasi-flabby (introduced as quasi-flasque in [To]) if, for every open U ⊂ Ω, the map

ϕ : M(Ω)⊗E(Ω) E(U) −→M(U)

defined by ∑
mi ⊗ fi −→ fir(mi)

is an isomorphism, where r : M(Ω) −→ M(U) is the “restriction” map (see Chapter V
Section 6 of [To]).

First we will observe that ϕ is always injective. Suppose ϕ(Σmi ⊗ fi) = 0, i.e.,
Σfir(mi) = 0. By V.6.1 of [To], there is a C∞ function α on Ω which is positive on
U and infinitely flat on Ω−U such that αfi is C∞ on Ω and infinitely flat on Ω−U . Thus
Σ(αfi)mi = 0 on Ω. Thus,∑

mi ⊗ fi =
∑

mi ⊗ (αfi)
1
α

=
∑

mi(αfi)⊗
1
α

= 0⊗ 1
α

= 0 .

(2.22) Lemma. Let X be a subset of Ω and let I be the sheaf of C∞ germs which vanish
on X. Then I is quasi-flabby. If Ix is generated by the germs at x of C∞ functions
f1, . . . , fk, then there is a neighborhood U of x such that (f1)y, . . . , (fk)y generate Iy at
each y ∈ U and f1 | U, . . . , fk | U generate I(U).

Proof. To prove that I is quasi-flabby, it is enough to show that ϕ is surjective. Pick
f ∈ I(U). By V.6.1 of [To], there is a C∞ function α which is positive on U and infinitely
flat on Ω − U such that g = αf is C∞ on Ω and infinitely flat on Ω − U . Of course, g is
in I(Ω). On U , f = g/α = ϕ(g ⊗ (1/α)).

The second claim follows from V.6.4 of [To] and a partition of unity argument. �

(2.23) Proposition. Suppose f : (Rn, 0) −→ (Rp, 0), n ≥ p, is a C∞ map-germ which
has non-degenerate critical set. Then Σn−p+1

t (f) is dense in C.

Proof. By (2.22), there is an open neighborhood U of 0 and a representative F of f on U
such that J(F ) = I(C(F )) and such that

(*) J(Fy) = I(C(Fy)) for all y ∈ U .
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Since I(C(F )) is closed and finitely generated, it is a Lojasiewicz ideal (see V.4.4 of [To]),
so the regular points of C(F ) are dense (see the proof of V.4.6 of [To]).

By (2.7), these regular points of C(F ) have dimension ≥ p− 1. By assumption, C(F )0
has dimension p− 1, so, shrinking U if necessary, we may assume these regular points are
all of dimension p− 1. By (2.6), j2F (x) ∈ Σn−p+1

t at these regular points. �

Let I∞(C) (respectively Iω(C)) denote the ideal of C∞ (respectively real analytic)
function-germs vanishing on C; we use a similar notation for J(f), En and the correspond-
ing sheaves. An analytic variety-germ C is said to be coherent if it has a representative C ′

such that Iω(C ′) is finitely generated.

(2.24) Proposition. Suppose f : (Rn, 0) −→ (Rp, 0), n ≥ p, is C∞ equivalent to an
analytic germ g. The following are equivalent:

1) f is C∞ with non-degenerate critical set;
2) g is R-ω with non-degenerate critical set and C(g) is coherent;

For G any representative of g,
3) Gx is R-ω with non-degenerate critical set for all x sufficiently near 0;

4a) Σn−p+1
t (g) is dense in C(g) and

b) (C(Gx))C = C((Gx)C) for all x sufficiently near 0.

Proof. First note that, for C = C(g),

Iω(C)E∞n ⊆ I∞(C)

⊇ J∞(g)

= Jω(g)E∞n
⊆ Iω(C)E∞n .

By a theorem of Malgrange (VI.3.10 of [Mal]; or see VI.4.2 of [To]), C is coherent if,
and only if, Iω(C)E∞n = I∞(C). By I.4.9 of [To] and V.1.12 of [Mal], IE∞n ∩ Eωn = I
for any ideal I ⊂ Eωn . Thus Jω(g)E∞n = Iω(C)E∞n if, and only if, Jω(g) = Iω(C). Thus
I∞(C) = J∞(g) if, and only if, Iω(C) = Jω(g) and C(g) is coherent. Thus f is C∞ with
non-degenerate critical set if, and only if g is C∞ with non-degenerate critical set if, and
only if, g is R-ω with non-degenerate critical set and C(g) is coherent.

By definition, C(g) is coherent if, and only if, Iω(C(G)) is finitely generated (i.e. co-
herent) on a neighborhood of 0. Since J ω(G) is coherent, Iω(C(G)) = J ω(G) on a
neighborhood of U if, and only if, Iω(C(G))0 = J ω(G)0 and J ω(C(G)) is coherent on a
neighborhood of 0. Thus (2) is equivalent to (3).

It is immediate from (2.18) that (3) ⇒ (4). On the other hand, (4a) implies that
cod(C(G)x − Σn−p+1

t (Gx)) ≥ 1 for all x sufficiently near 0. So (4) ⇒ (3) by (2.18),
also. �

(2.25) Example f(u1, u2, u3, z) = (u1, u2, u3, z
3−zu1(u2

2+u2
3)) is a R-ω CN ; but C is not

coherent; for C(f)C 6= C(fC) along the negative u1-axis. So f does not have non-degenerate
critical set in the C∞ category.

For general results on when an ideal I ⊂ E∞n satisfies I(V (I)) = I, see [AL] and [Bo].
Some of the arguments in [Bo] are similar to those given here.
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(2.26) Proposition. Suppose f : (Rn, 0) −→ (Rp, 0), n ≥ p, is C∞ with non-degenerate
critical set.

1) f is generically finite-to-one on its critical set if, and only if, Σn−p+1,0(f) is dense
in C

2) If f is a CS, then f is generically an embedding on C.

Proof. Since f has non-degenerate critical set, Σn−p+1
t (f) is dense in C. Now one can

mimic the proof of (2.12) to prove (1).
f a CS implies that f |C is generically one-to-one. By (1), f |C is generically an immer-

sion. Thus f |C is generically an embedding. �

(2.27) Proposition. Suppose f ∈ Epn is equivalent to an analytic map-germ g whose
complexification is a CN . Suppose dimC(G)x = min{p− 1, n}, for all x sufficiently near
0, for any representative G of g. Then f is a C∞ CN .

Proof. That f |C(f) is a normalization follows immediately from the definition. We are
done in case n < p, so assume n ≥ p.
C(GC)x is normal for all x sufficiently near 0, so, in particular, is irreducible. Thus

dimC(G)x = p − 1 implies C(Gx)C = C(GC)x. But gC a CN implies (GC)x has non-
degenerate critical set for all x sufficiently near 0. By (2.18), Gx is R-ω with non-degenerate
critical set for all x sufficiently near 0. By (2.24), f has non-degenerate critical set in the
C∞ category. Thus f is a C∞ CN . �

§3. Discriminant matrices.
We begin this section with some recipes for calculating discriminants. It is implicit in

the arguments of §§1,2 that the reduced equation of the discriminant of a CS, at least in
the C-analytic case, can be obtained by taking the determinant of an appropriate square
matrix. We make this explicit here. It will appear that the matrices can be constructed
in a rather canonical way; we call them discriminant matrices. It seems that they encode
information about the map-germ they are defined from in a rather more convenient form
than the equation of the discriminant itself; we will conclude with a discussion of this,
including results on A-codimension.

Our first recipe is a concretization of (2.15) — this procedure can also be found in (2.2)
of [MP], where a different argument is given.

(3.1) Proposition. We adapt the notation of 2.15. Let f : (Cn, S) −→ (Cp, y) be a
C-analytic map-germ of finite singularity type, with n+ 1 ≥ p. Let π : Cp −→ Cp−1 be the
linear projection π(y1, . . . , yp) = (y1, . . . , yp−1).

Suppose that α1, . . . , αs ∈ ES project to a C-basis for

EC/(π ◦ f)∗mp−1EC .

Then, for i = 1, . . . , s, fpαi can be written uniquely as a (π ◦ f)∗Ep−1-linear combination
of the α1, . . . , αs modulo J (f)S, say

fpαj =
s∑
i=1

(π ◦ f)∗vij · αi.
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Let V be the matrix whose entries are the vij, let I be the identity matrix and let δ =
ypI − V . Then there is an exact sequence

0 −→ Esp
δ−→ Esp

π−→ EC −→ 0,

where π(ei) is the projection of αi, {ei} the natural basis of Esp.
Moreover, the ideal 〈det δ〉 ⊂ Ep defines the discriminant locus; it is reduced if, and

only if, f is a CS.

Proof. By the Preparation Theorem, α1, . . . , αs form a basis for EC as an Ep−1-module
(with action induced by (π ◦ f)∗. We claim that they form a free basis. For, arguing as in
(2.15), we have that ECi

is Cohen-Macaulay as an Exi
-module, so that

depthExi
ECi

= dimECi
= p− 1,

since dimC(f) = p− 1. Then, by (1.2),

depthEp−1
ECi = p− 1,

and so, by (1.4), it has homological dimension zero. Since EC is the direct sum of the ECi ,
this completes the argument.

For j = 1, . . . , s, fpαj projects to an element of EC , which can be written as an Ep−1-
linear combination of the basis elements; so there exist vij ∈ Ep−1 with

(rj) fpαj =
s∑
i=1

(π ◦ f)∗vij · αi.

This representation is unique because the basis is free.
We claim that all Ep-relations amongst the αi are Ep-linear combinations of the (rj).

To be more precise, let

R = { (φ1, . . . , φs) ∈ Esp :
s∑
j=1

(φj ◦ f)αj ∈ J (f) }.

This is clearly an Ep-module. We claim that

R = Ep〈A1, . . . , As〉,

where

Ai = ypej −
s∑
i=1

vijei.

To see this, consider Φ = (φ1, . . . , φs) ∈ R. For j = 1, . . . , s, we can write

φj = ξj + ypηj ,
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with ξj ∈ Ep−1 and ηj ∈ Ep. As above, we can write, for j = 1, . . . , s,

f∗ηj · αj =
s∑
j=1

(π ◦ f)∗wij · αi mod J (f),

with wij ∈ Ep−1. Set

Nj = ηjej −
s∑
i=1

wijei;

by the above, we have Nj ∈ R.
Thus

Φ =
s∑
j=1

(ξj + ypηj)ej

=
s∑
j=1

ξjej + yp

s∑
j=1

(Nj +
s∑
i=1

wijei)

=
s∑
j=1

ξjej + yp

s∑
j=1

Nj +
s∑
j=1

s∑
i=1

wij(Ai +
s∑

k=1

vikek)

=
s∑

k=1

(ξk +
s∑
j=1

s∑
i=1

wijvik)ek + yp

s∑
j=1

Nj +
s∑
j=1

s∑
i=1

wijAi.

Since Φ, Ai, Ni are in R, we have that

s∑
k=1

(π ◦ f)∗(ξk +
s∑
j=1

s∑
i=1

wijvik) · αk ∈ J (f)S .

Since the αk are a free Ep−1-basis for EC , the coefficients on the left hand side must be
zero, so

Φ = yp

s∑
j=1

Nj +
s∑
j=1

s∑
i=1

wijAi.

Since Φ ∈ R was chosen arbitrarily, this shows

R ⊂ Ep〈A1, . . . , As〉+mpR.

R is a finitely generated Ep-module (e.g. because it is the stalk of a morphism of coherent
Ep-sheaves), so, by Nakayama’s Lemma, R ⊂ Ep〈A1, . . . , As〉, as required.

It follows that
Esp

δ−→ Esp
π−→ EC −→ 0

is an exact sequence of Ep-modules, where δej = Aj . Thus det δ generates (F0)Ep(EC)
and so defines the discriminant locus.
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We need to show that δ is injective. If ker δ 6= 0, then there exists a not-identically-zero
ξ ∈ ker δ ⊂ Esp. There is a Zariski open set U on which ξ 6= 0. Since δ is square, det δ = 0
on U , hence everywhere. Thus (F0)Ep(EC) = {0}, implying that the discriminant is all of
Cp, which is false. Thus δ is injective.

By (2.17), ED is reduced if, and only if, f is a CS. �

Our next result takes a more module-theoretic point of view. Where we previously have
viewed the critical space as given by the ring EC = ES/J (f)S , we here view it as given in
some sense by the ES-module MC = EpS/df(EnS ).

(3.2) Proposition. Let f : (Cn, S) −→ (Cp, y) be a C-analytic map-germ of finite sin-
gularity type, with n ≥ p. Let π : Cp −→ Cp−1 be the linear projection π(y1, . . . , yp) =
(y1, . . . , yp−1).

Suppose that β1, . . . , βt ∈ EpS project to a C-basis for

MC/(π ◦ f)∗mp−1MC .

Then, for i = 1, . . . , t, fpβi can be written uniquely as a (π ◦ f)∗Ep−1-linear combination
of the β1, . . . , βt modulo df(EpS), say

fpβj =
s∑
i=1

(π ◦ f)∗wij · βi.

Let W be the matrix whose entries are the wij, let I be the identity matrix and let ∆ =
ypI −W . Then there is an exact sequence

0 −→ Etp
∆−→ Etp

π−→MC −→ 0,

where π(ei) is the projection of βi, {ei} the natural basis of Etp.
Moreover, the ideal 〈det ∆〉 ⊂ Ep defines the discriminant locus; it is reduced if, and

only if, f is a CS.

Proof. The argument is very similar to that for (3.1). To get started, we note that, f
being of finite singularity type, C(f) is of dimension p − 1, and so ECi is too. Thus by
(1.13), setting MCi = Epxi

/df(Enxi
), we have hdExi

MCi = n − p + 1. Since dim Exi = n, it
follows from (1.4) that depthExi

(MCi
) = p− 1. But dimMCi

= dim Exi
/ annMCi

= p− 1,
and so MCi

is a Cohen-Macaulay Exi
-module. Taking direct sums we see that MC is a

Cohen-Macaulay EC-module, of depth p− 1.
The argument that

0 −→ Etp
∆−→ Etp

π−→MC −→ 0,

is exact is now exactly as in (3.1). We have then that (F0)Ep(MC) = 〈det ∆〉, so

(V (det∆), y) = (supp((F0)Ep(MC)), y)

= (f supp((F0)ES
(MC)), y)

= (fC(f), y) = (D, y),
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as required.
Suppose now that f is a CS. Then, by (2.12),

D′ = { y′ ∈ D : f−1y′ ∩ C = {x}, and fx is of fold type }

is dense in D.
Now for any point y′ ∈ D such that all points of Sy′ = f−1y′ ∩ C have kernel rank

n− p+ 1,
ESy′/J(f)Sy′

∼= EpSy′
/df(EnSy′

)

as ESy′ -, hence also as Ey′ -, modules, and so have the same 0th Fitting ideals. In particular,
then, for y′ ∈ D′,

〈det ∆〉 = (F0)Ey′ (MC) ∼= (F0)Ey′ (EC),

and is reduced since a fold-germ is certainly a CS.
Thus, by (1.18), det ∆ is reduced.
We defer proof of the converse until after (3.4). �

We now compare the hypotheses and conclusions of (3.1) and (3.2).
The first point to make is that the finite dimensionality hypotheses implicit in the choice

of C-bases need not hold for the standard coordinates in Cp. However, for any given choice
of coordinates for (Cp, y), they either both hold or both fail; and they do hold for a generic
choice of coordinates, as the following lemma shows.

(3.3) Lemma. The following are equivalent:
(1) dimC EC/(π ◦ f)∗mp−1EC <∞;
(2) dimC MC/(π ◦ f)∗mp−1MC <∞;
(3) π ◦ f |(C,S) is finite-to-one;
(4) f |(C,S) and π|(D, y) are finite-to-one;
(5) f and π ◦ f are of finite singularity type.

Proof. Recall that a map-germ g being of finite singularity type is equivalent to g|C(g)
being finite-to-one. Thus (3) implies (5) because C(π ◦ f) ⊂ C(f). Clearly (3) and (4) are
equivalent.

(3) ⇒ (2): Since the direct image of a coherent sheaf is coherent, (π◦f)∗MC is coherent.
In particular, its stalk at π(y) is a finitely-generated Ep−1-module; by the Preparation
Theorem this is equivalent to (2).

(2) ⇒ (1): If (2) holds, then

mk
SE

p
S ⊂ df(EnS ) + (π ◦ f)∗mπ(y)EpS

for some k < ∞. Thus, for any α1, . . . , αp ∈ mk
S we can write the diagonal matrix with

α1, . . . , αp down the diagonal as df ·A+B, with A ∈ EnS and B ∈ (π ◦ f)∗mπ(y)EpS . Taking
determinants, we see that

α1 · · · · · αp ∈ J(f) + (π ◦ f)∗mπ(y)ES .
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Thus
mkp
S ⊂ J(f) + (π ◦ f)∗mπ(y)ES ,

and (1) holds.
(1) ⇒ (3): (1) implies that J(f) + (π ◦ f)∗mπ(y)ES contains a power of mS , so that

S ⊃ V (J(f) + (π ◦ f)∗mπ(y)ES) = C ∩ (π ◦ f)−1π(y).

But this implies π ◦ f |C(f) is finite-to-one, as required.
(5) ⇒ (4): (We thank C. T. C. Wall for showing us this argument).
Note that if x ∈ C(f) − C(π ◦ f), then (df1)x, . . . , (dfp)x are not linearly independent,

but (df1)x, . . . , (dfp−1)x are; thus (dfp)x is a linear combination of (df1)x, . . . , (dfp−1)x.
Suppose (4) fails, so that π|D(f) is not finite-to-one. Since Kπ = π−1π(y) is of dimen-

sion one, this means
Kπ ⊂ D(f) = f(C(f)).

Thus there is a non-trivial analytic curve-germ φ : (C, 0) −→ (C(f), S) with π ◦ f ◦ φ = 0,
whence

(df1)φ(t)(
dφ

dt
) = 0, . . . , (dfp−1)φ(t)(

dφ

dt
) = 0, for t ∈ (C, 0).

If also (dfp)φ(t)(
dφ
dt ) = 0 for all t ∈ (C, 0), then we would have d

dt (f ◦φ)t = 0, so f ◦φ would
be constant, so that imφ ⊂ C(f) ∩ f−1(φ(0)), contradicting the fact that f is of finite
singularity type. So (dfp)φ(t)(

dφ
dt ) 6= 0 for almost all t ∈ (C, 0), and so (dfp)φ(t) cannot be a

linear combination of (df1)φ(t), . . . , (dfp−1)φ(t) for such t. Hence, by our first remark, since
φ(t) ∈ C(f), φ(t) ∈ C(π ◦ f) for such t. But φ(t) ∈ (π ◦ f)−1(π(y)) for all t ∈ (C, 0), so
π ◦ f cannot be of finite singularity type, and (5) fails �

For fixed f and π, we now attempt to compare the δ and ∆ of (3.1) and (3.2). In the
case where f is of corank one at each point of S (and n ≥ p), MC and EC are isomorphic as
ES-modules, hence as Ep-modules, and so δ and ∆ are “essentially the same”; that is, up
to change of basis. (We have already used this isomorphism in the proof of (3.2); perhaps
it is worth being more explicit: by appropriate choice of coordinates, fxi

can be put into
the “linearly adapted” form

f(u1, . . . , up−1, x1, . . . , xn−p+1) = (u1, . . . , up−1, g(u, x)),

so that df(Enxi
) is generated by the columns of the Jacobian matrix:

1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0
∂g
∂u1

. . . ∂g
∂up−1

∂g
∂x1

. . . ∂g
∂xn−p+1

 ,
while J(f) = 〈 ∂g∂x1

. . . ∂g
∂xn−p+1

〉. It is easy to see that the Exi
-injection Exi

−→ Epxi
given by

the inclusion in the last coordinate induces an Exi
-module isomorphism ECi

∼= MCi
. The

result for general S follows by taking direct sums.)
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However, when f is of corank greater than one at some point of S, EC and MC are not
isomorphic as ES-modules, since the minimal number of generators required is different: if
S = {x} and f has corank k at x, then MC requires k generators, but EC requires only 1
generator, namely the constant function 1.

Neither are EC and MC isomorphic as Ep-modules in general. Again, we can some-
times see this simply by counting generators. For example, for the germ f : (x, y) 7→
(xy, x2 + y2), and so for any unfolding of this germ, we find dimC(EC/f∗mpEC) =
3, dimC(MC/f

∗mpMC) = 4, which (by the Preparation Theorem) gives the numbers
of Ep-generators for EC , MC respectively. However, there are many situations where the
minimum number of generators involved is the same; this is the case whenever f is an
(unfolding of) a weighted homogeneous germ with n > p, by Proposition 9.10 of [Lo]; this
does not seem to imply isomorphism as Ep-modules, however.

Nonetheless, when we consider EC and MC as Ep−1- modules, then they are isomorphic.
Since, as the proofs of (3.1) and (3.2) explain, EC and MC are free Ep−1 modules, we need
only see that they have the same rank. This follows from a very general (and deep) result
of Buchsbaum-Rim ([BR],(4.2)) (though a considerable amount of translation of concepts
is required to see this). We give an alternative proof for our particular case, since the point
of view we take will also allow us to introduce two further useful notions.

(3.4) Lemma. Let f : (Cn, S) −→ (Cp, y) satisfy the equivalent hypotheses of (3.1), (3.2).
Then, in the notation of (3.1), (3.2), 〈det δ〉 = 〈det ∆〉 and s = t.

Proof. Let F : (Cn+k, S × 0) −→ (Cp+k, y× 0) be a (Ck, 0)-level-preserving unfolding of f
which is a CS; such an F exists, since f , being of finite singularity type, has an unfolding
which is infinitesimally stable, hence a CS.

We take π̃ : Cp+k −→ Cp+k−1 to be given by

(u, y1, . . . , yp) 7→ (u, y1, . . . , yp−1),

and we identify the αi of (3.1) and the βj of (3.2) as elements of ES×0, resp. Ep+kS×0, in the
obvious way.

The hypotheses of (3.1), (3.2) hold with f and π replaced by F and π̃, and we obtain
matrices δ̃ and ∆̃ as there. Since F is a CS, det δ̃ and det ∆̃ give reduced equations for
D(F ), and so det δ̃ = det ∆̃.

The δ, ∆ of (3.1), (3.2) for f , π are obtained from those for F , π̃ by restricting to
{u = 0}, since restricting an equation

Fpαj =
∑

ṽijαi, ṽij ∈ Ep+k−1

to {u = 0} gives an equation

fpαj =
∑

vijαi, with vij(y) = ṽij(0, y),

so the columns of δ̃ restrict to those of δ, and similarly for ∆.
Thus

det δ = det δ̃|{u = 0}
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so
det δ = det∆,

proving the first statement.
Now for the second statement. Recall that δ = ypI − V , where V is a matrix with

entries in π∗Ep−1,π(y). Thus V is the matrix corresponding to multiplication by fp in the
free Ep−1-module EC . Restricting to Kπ = π−1π(y), we see that V |Kπ is the matrix
corresponding to multiplication by fp in the C-vector space EC/(π ◦ f)∗mπ(y)EC . Since
dimC EC/(π ◦ f)∗mπ(y)EC is finite,

fkp ∈ mk
p ⊂ J(f) + (π ◦ f)∗mπ(y)ES

for some finite k; thus V |Kπ is nilpotent, and thus its characteristic polynomial is ysp|Kπ.
But this characteristic polynomial is det(ypI − V )|Kπ = det δ|Kπ. So det δ is a monic
polynomial in yp with coefficients in π∗mπ(y) and leading term ysp.

In an exactly similar way, det ∆ is a monic polynomial in yp with coefficients in π∗mπ(y)

and leading term ytp. So, since 〈δ〉 = 〈∆〉, we see that s = t, as required. �

Notice that the rest of the proof of (3.2) is now immediate.
Another consequence of this is the following:

(3.5) Corollary. If f is a CS-FST , s = t = the intersection number of Kπ and D(f).

Proof. We saw during the proof that the restriction of det(δ) to the line Kπ is of order s.
If f is a CS, then det(δ) is the defining equation of D(f). �

There is yet another number equal to these.

(3.6) Proposition ([Lê], [Gr]). s = t = µ(f) + µ(π ◦ f).

(Here µ denotes the Milnor number). (An important special case of this is an immediate
consequence of the proof of (3.4): if f is a function (i.e., p = 1), then det δ =< yµ > E1. )

We can use this to give a useful way of finding a basis for MC/(π◦f)∗mπ(y)MC , a result
which was worked out jointly with C. T. C. Wall.

(3.7) Proposition. Suppose n ≥ p, let f : (Cn, S) −→ (Cp, y) be a C-analytic map-germ,
and suppose that

(0, fp) ⊂ df(EnS ) + (π ◦ f)∗mπ(y)EpS .

Let {φi : i = 1, . . . , a } be a C-basis for

Ep−1
S /d(π ◦ f)(EnS ) + (π ◦ f)∗mπ(y)Ep−1

S ,

and let {ψj : j = 1, . . . , b } be a C-basis for

ES/J(f) + f∗myES .

Then
{ (φi, 0) : i = 1, . . . , a } ∪ { (0, ψj) : j = 1, . . . , b }



MAP-GERMS DETERMINED BY THEIR DISCRIMINANTS 27

is a C-basis for EpS/df(EnS ) + (π ◦ f)∗mπ(y)EpS.

Proof. “Forgetting” the final coordinate induces a surjection

EpS
df(EnS ) + (π ◦ f)∗mπ(y)EpS

−→
Ep−1
S

d(π ◦ f)(EnS ) + (π ◦ f)∗mπ(y)Ep−1
S

.

Its kernel is isomorphic to a quotient of ES by an ideal containing J(f) + (π ◦ f)∗mπ(y)ES ,
since this last term is in the annihilator of the left hand side. Indeed, the property of (0, fp)
in the hypotheses shows that the ideal also contains fp, and so contains J(f) + f∗myES .

If we set

τ(π ◦ f) = dimC{Ep−1
S /d(π ◦ f)(EnS ) + (π ◦ f)∗mπ(y)Ep−1

S },
τ ′(f) = dimC{ES/J(f) + f∗myES},

which is a slightly adapted version of the notation of [Lo], then we have shown, by (3.6),
that

µ(f) + µ(π ◦ f) ≤ τ ′(f) + τ(π ◦ f).

Now
τ ′(f) ≤ µ(f)

(for n− p > 0, this is proved on page 164 of [Lo]; if n = p, we always have µ(f) = τ ′(f),
as shown for example in [Wa]) and

τ(π ◦ f) ≤ µ(π ◦ f)

(as is shown in [LS]). So in fact

τ ′(f) = µ(f) and τ(π ◦ f) = µ(π ◦ f),

and our spanning set is a basis. �

We have in mind in particular the case where f is a weighted homogeneous map-germ.
If, for each point in S, f is weighted homogeneous, then we have

(d1f1, . . . , dpfp) =
n∑
i=1

wi
∂f

∂xi
,

where wi are the weights allocated to coordinates xi, and di are the weights of the fi.
(3.8). The foregoing results provide a discriminant matrix bigger than actually neces-

sary if s > k = dimC{EC/f∗myEC} or if t > k′ = dimC{MC/f
∗myMC}: there must be a

k× k discriminant matrix of EC and a k′ × k′ discriminant matrix of MC . In fact, we can
find these matrices and the presentations they represent from those of (3.1) and (3.2), if
we choose the αi and βj in the right way.
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Since dimC{EC/(π ◦ f)∗mπ(y)EC} <∞, there is some r <∞ such that

frpES ⊂ J(f) + (f1, . . . , fp−1)ES ,

and thus, if a1, . . . , ak project to a basis for EC/f∗myEC , then

{ f lpaj : j = 1, . . . , k, l = 0, . . . , r − 1 }

project to a spanning set for EC/(π ◦ f)∗mπ(y)EC . Thus we can choose a collection of
elements

(3.8.1) {αlj = f lpaj : j = 1, . . . , k, l = 0, . . . , rj }

which project to a basis.
We then have r − k “trivial” relations

(3.8.2) αlj = fpαl−1,j , j = 1, . . . , k, l = 1, . . . , rj ;

substituting f lpaj for αlj in the remaining k relations gives a k × k-discriminant matrix
derived from EC . We illustrate this procedure in Example (3.9.6) below.

An exactly similar argument gives a k′ × k′-discriminant matrix derived from MC .
The matrices so produced are canonical in the sense that a different choice of Ey-basis

for the module EC or MC , and a different choice of basis for the module of relations induces
an Ey-equivalence of matrices.

(3.9) Examples.
1) Let f(x) = (x2) = (Y ) (i. e., Y is the target coordinate). The above algorithm

produces, with respect to the Ep- (here p = 1) and Ep−1-basis {[1]} in EC , the discriminant
matrix:

δ = [Y ] .

2) Let f(u, x) = (u, x3 + ux) = (U, Y ). The above algorithm produces, with respect to
the Ep- and Ep−1-basis {[1], [x]} in EC , the discriminant matrix:

δ =
[

Y 2
9U

2

− 2
3U Y

]
.

3) Let f(u, v, x) = (u, v, x4 + ux + vx2) = (U, V, Y ). The above algorithm produces,
with respect to the Ep- and Ep−1-basis {[1], [x], [x2]} in EC , the discriminant matrix:

δ =

 Y 1
8UV

3
16U

2

− 3
4U Y + 1

4V
2 1

2UV

− 1
2V − 3

4U Y + 1
4V

2

 .
4) Let f(u, v, w, x) = (u, v, w, x5 +ux+vx2 +wx3) = (U, V,W, Y ). The above algorithm

produces, with respect to the Ep- and Ep−1-basis {[1], [x], [x2], [x3]} in EC , the discriminant
matrix:

δ =


Y 2

25UW
3
25UV

4
25U

2 − 6
125UW

2

− 4
5U Y + 4

25VW
2
25UW + 6

25V
2 11

25UV − 12
25VW

2

− 3
5V − 4

5U + 6
25W

2 Y + 13
25VW

14
25UW + 6

25V
2 − 18

125W
3

− 2
5W − 3

5V − 4
5U + 6

25W
2 Y + 13

25VW

 .
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Discriminant matrices, though with respect to different bases, are produced for the
stable unfoldings of all xk in [Ar2], though they are obtained from a rather different point
of view. We will explain the connection a little later on (Proposition (3.12)). Also the
determinants (up to a unit) are calculated in [Te].

5) Let f(u, v, w, x, y) = (u, v, w, x3 + y3 + ux + vy + wxy) = (U, V,W,Z). The above
algorithm produces, with respect to the Ep- and Ep−1-basis {[1], [x], [y], [xy]} in EC , the
discriminant matrix:

δ =


Z 2

9U
2 − 1

27VW
2 2

9V
2 − 1

27UW
2 − 5

27UVW

− 2
3U Z − 1

27W
3 1

3VW
2
9V

2 − 1
9UW

2

− 2
3V

1
3UW Z − 1

27W
3 2

9U
2 − 1

9VW
2

− 1
3W − 2

3V − 2
3U Z − 1

27W
3

 .
Observe that the discriminant matrices above are also those for stable unfoldings of

functions obtained by adding a nondegenerate quadratic form in extra variables, since EC
is unaffected.

6) Let f(u, v, x, y) = (u, v, xy, x2 + y2 + ux+ vy) = (U, V,W,Z). The above algorithm
produces, with respect to the Ep−1-basis {[1], [x], [y], [Z ◦ f ]} in EC , the discriminant
matrix:

δ1 =


Z − 3

2VW − 3
2UW −4W 2 − 7

2UVW

0 Z + 3
8U

2 −2W + 1
8UV −4VW + 3

16U
3 + 1

16UV
2

0 −2W + 1
8UV Z + 3

8V
2 −4UW + 3

16V
3 + 1

16U
2V

−1 − 1
4U − 1

4V Z − 1
8U

2 − 1
8V

2

 .
An Ep-basis for EC is {[1], [x], [y]}; we chose [Z ◦ f ] as the fourth generator as an Ep−1-

basis to satisfy (3.8.1). The first column represents the “trivial relation” of (3.8.2). We
reduce the number of generators and relations by 1 by making the substitution Z · [1] for
[Z ◦ f ]; in the language of matrix theory, we do the elementary row operation: replace the
first row by the first row plus Z times the fourth row—then remove the first column and
fourth row.

With respect to this Ep-basis, this procedure yields the discriminant matrix:

δ2 =

− 3
2VW − 1

4UZ − 3
2UW − 1

4V Z −4W 2 − 7
2UVW + Z2 − 1

8 (U2 + V 2)Z
Z + 3

8U
2 −2W + 1

8UV −4VW + 3
16U

3 + 1
16UV

2

−2W + 1
8UV Z + 3

8V
2 −4UW + 3

16V
3 + 1

16U
2V

 .
Now let us compute a discriminant matrix using MC . {[(1, 0)], [(0, 1)], [(0, x)], [(0, y)]}

is an Ep- and an Ep−1-basis for MC . The algorithm of (3.2) produces the discriminant
matrix:

∆ =


Z W 1

4UW
1
4VW

4W + 2UV Z − 3
2VW − 3

2UW

3V − 1
2U Z + 1

4U
2 −2W

3U − 1
2V −2W Z + 1

4V
2

 .
It is interesting to note how much simpler ∆ is than either δ1 or δ2.
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The reader is invited to calculate the equations of the respective discriminants by com-
puting determinants.

The examples we have given are all of stable germs; this is because discriminant matrices
for non-stable germs (of FST ) can be induced from these, as we will now show.

We have concentrated on the case n ≥ p so far in this section; everything we do from
now on will be for general n and p.

Recall that a morphism of map-germs f 7→ g is a pair of map-germs (φ, ψ) such that
the diagram

(N ′, S′)
g−−−−→ (P ′, y′0)xφ xψ

(N,S)
f−−−−→ (P, y0)

is cartesian; that is, it commutes, ψ is transverse to g, and (φ, f) is a diffeomorphism of
(N,S) onto the fibre product of g and ψ.

An important particular case of a morphism occurs when φ, ψ are embeddings, in which
case (g; (φ, ψ)) is called an unfolding of f . It is well-known that any map-germ of FST has
a stable unfolding: that is, has an unfolding (g; (φ, ψ)) with g stable.

At the opposite extreme, we have the case where φ, ψ are submersions: we call this a
projection.

In point of fact, any morphism can be written as the composite of an unfolding and a
projection; for (φ, ψ) as above is the composite of the unfolding

((φ, f), (ψ, 1P )) : f 7→ g × 1P

and the projection
(πP , π′P ) : g × 1P 7→ g

where πP : (N ′ × P, S × y0) −→ (N ′, y0) and π′P : (P ′ × P, y′0 × y0) −→ (P ′, y′0) are the
natural projections. In fact a suitable choice of coordinates allows any projection to be
written in the above form. Similarly, a suitable choice of coordinates allows any unfolding
to be written in the form

(N × U, S × 0)
g−−−−→ (P × U, y0 × 0)x1N×0

x1P×0

(N,S)
f−−−−→ (P, y0)

where U is an open neighborhood of 0 in some Euclidean space, and g is (U, 0)-level-
preserving (see e.g. the argument after Definition (0.1), Chapter III, of [GWPL]).

One basic fact is that Jacobian ideals “commute with base change” (see page 48 of
[Lo]): φ∗J(g) · ES = J(f). This is immediate if the morphism is a projection, and also
if the morphism is an unfolding, so holds for all morphisms. Also the discriminant space
commutes with base change (see page 62 of [Lo] and also [Te]): F0(ED(f)) is generated by
F0(ED(g)) ◦ ψ. We show that similar properties hold for the discriminant matrices.
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(3.10) Theorem. Suppose that (φ, ψ) : f 7→ g is an analytic morphism of map-germs
as above, with N , N ′, P and P ′ replaced by Cn, Cn′ , Cp and Cp′ . Let β1, . . . , βk ∈ ES′
project to a basis for EC′ as an Ep′-module, and let

Elp′
δ′−→ Ekp′

π′−→ EC′ −→ 0

be a presentation with π′(ei) = βi.
Let α1, . . . , αk ∈ ES be such that

φ∗βi − αi ∈ J(f) (i = 1, . . . , k).

Then
Elp

δ−→ Ekp
π−→ EC −→ 0,

with δij = δ′ij ◦ ψ and π(ei) = αi, is a presentation for EC (and δ is injective if δ′ is).

We omit the proof, which is very similar to the proof of the following theorem.

(3.11) Theorem. Suppose that (φ, ψ) : f 7→ g is an analytic morphism of map-germs
as above, with N , N ′, P and P ′ replaced by Cn, Cn′ , Cp and Cp′ . Let β1, . . . , βk ∈ Ep

′

S′

project to a basis for MC′ as an Ep′-module, and let

Elp′
∆′

−→ Ekp′
π′−→MC′ −→ 0

be a presentation with π′(ei) = βi.
Let α1, . . . , αk ∈ EpS be such that

φ∗βi − dψ ◦ αi ∈ dg(En
′

S′ ) ◦ φ (i = 1, . . . , k).

Then
Elp

∆−→ Ekp
π−→MC −→ 0,

with ∆ij = ∆′
ij ◦ ψ and π(ei) = αi, is a presentation for MC (and ∆ is injective in case

∆′ is).

Proof. If (R1, . . . , Rk) ∈ Ekp′ is a relation for β1, . . . , βk modulo dg(En′S′ ), then we have

k∑
i=1

g∗Ri · βi = dg · η, for some η ∈ En
′

S′ ,

so, composing with φ, we have

k∑
i=1

(g ◦ φ)∗Ri · βi ◦ φ = dg · η ◦ φ.
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Since g ◦ φ = ψ ◦ f and βi ◦ φ− dψ · αi ∈ dg(En
′

S′ ) ◦ φ, this gives

k∑
i=1

(ψ ◦ f)∗Ri · dψ · αi = dg · η′ ◦ ψ, for some η′ ∈ En
′

S′ ,

or

dψ · (
k∑
i=1

(ψ ◦ f)∗Ri · αi) = dg · η′ ◦ φ.

Thus (
∑k
i=1(ψ ◦ f)∗Ri ·αi, η′ ◦φ) is tangent to the fibre-product of ψ and g; since (f, φ)

is a diffeomorphism to this fibre product, there is a vector field ζ ∈ EnS such that

df · ξ =
k∑
i=1

(ψ ◦ f)∗Ri · αi

and
dφ · ζ = η′ ◦ φ;

in particular, (ψ∗R1, . . . , ψ
∗Rk) is a relation for α1, . . . , αk modulo df(EnS ).

It follows that the columns of ∆ are relations for the αi modulo df(EnS ); so it remains to
be shown that any relation for α1, . . . , αk modulo df(EnS ) can be obtained as an Ep-linear
combination of these columns. As in (3.10), we need only treat the cases of unfolding and
projection.

Consider first the case where (φ, ψ) is an unfolding. There is an l such that n′ = n+ l
and p′ = p+ l. Via coordinate choice we can treat g as a (Cl, 0)-level-preserving map-germ
with 0-level f , with φ = 1N × {0}, ψ = 1P × {0}; we write these as i, j respectively. Let
(S1, . . . , Sk) be a relation for α1, . . . , αk modulo df(EnS ), so

k∑
i=1

f∗Si · αi ∈ df(EnS ),

whence

dj(
k∑
i=1

f∗Si · αi) ∈ dj ◦ df(EnS ) ⊂ dg ◦ di(EnS ).

Hence, if the S̃i are extensions of the Si on (Cp×Cl, 0), then, since dj ·αi−βi◦i ∈ dg(En
′

S′ )◦i,

(
k∑
i=1

g∗S̃i · βi) ◦ i ∈ dg(En
′

S′ ) ◦ i,

so that
k∑
i=1

g∗S̃i · βi ∈ dg(En
′

S′ ) +mlEp
′

S′ .
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Since Ep
′

S′ = dg(En′S′ ) + {β1, . . . , βk}g∗Ep′ , we thus have

k∑
i=1

g∗S̃i · βi −
k∑
i=1

g∗Ti · βi ∈ dg(En
′

S′ )

for some Ti ∈ mlEp′ , or
k∑
i=1

g∗(S̃i − Ti) · βi ∈ dg(En
′

S′ ).

Thus (S̃1 − T1, . . . , S̃k − Tk) is an Ep′ -linear combination of the columns of ∆′; composing
with j, we see (S1, . . . , Sk) as an Ep-linear combination of the columns of ∆, as required.

Now we treat the case where (φ, ψ) is a projection. By suitable coordinate choice we
can suppose f = g× 1Cl , with φ the projection of Cn′ ×Cl to Cn′ and ψ the projection of
Cp′ × Cl to Cp′ .

Let Rf = im(∆) and Rg = im(∆′) be the modules of relations. Choose S = (S1, . . . , Sk),
an element of Rf . In local coordinates, we can write

f(x, u) = (g(x), u),

αi(x, u) = (βi(x), γi(x, u)) for some γi,

Si(x, u) = S0
i (x) +

l∑
j=1

ujS
′
i,j(x, u).

Then S0 = (S0
1(x), . . . , S0

k(x)) ∈ Rg. Furthermore,

k∑
i=1

Si(g(x), u)βi(x) = dgη(x, u), for some η.

Thus,

k∑
i=1

(Si(g(x), u)− Si(g(x), 0))βi(x) = dg(η(x, u)− η(x, 0)) ∈ mldg(En
′

S′ ).

It follows that S − S0 ∈ mlRf .
Thus

Rf ⊂ (ψ)∗Ep′Rg +ml ·Rf ,

hence

Rf ⊂ ((ψ)∗Ep′Rg)Ep′+l
= ((ψ)∗Ep′〈columns of ∆′〉)Ep′+l
= 〈columns of ∆′〉Ep,
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as required.
�

The discriminant matrix ∆ of an MC is not unique of course. In particular, it depends
on a choice of generating set in MC . If F is a stable mapping, then any basis for the
constant vector fields in the target projects to a generating set for MC as a module over
the target. (Important note: it is not necessarily a minimal generating set; the target
dimension minus the cardinality of a minimal generating set is the dimension of the A-
equisingularity set in the target.) This leads to a very interesting and useful discriminant
matrix, which has been studied from various points of view, and in varying generality, in
[Ar2], [Te], [Sa] and [Lo].

Let F : (Cn, S) −→ (Cp, 0) be a map-germ of FST with discriminant D. Let Θ(D)
denote the vector fields on (Cp, 0) liftable over F , i.e. those vector fields η on (Cp, 0) for
which there exists a vector field ξ on (Cn, S) with dFx(ξx) = η(f(x)) for all x ∈ (Cn, S). If
F is FST and a CS, this module of vector fields coincides exactly with the module of vector
fields tangent to the discriminant of F . For the (C, 0)-level-preserving diffeomorphism of
(Cp × C, 0 × 0) induced by integrating such a vector field η preserves the discriminant of
F×1C, so by [duP2] lifts over F×1C to a (necessarily C-level-preserving) diffeomorphism of
(Cn×C, S×0). Differentiating this in the C- direction yields a vector field on (Cn, S) lifting
η. Conversely, integrating a liftable vector field η′ and its lift yields a self-A-equivalence of
F × 1C, whose target diffeomorphism thus preserves the discriminant. Differentiating this
in the C-direction yields η′ as a vector field preserving the discriminant.

(3.12) Proposition. Let F : (Cn, S) −→ (Cp, 0) be an infinitesimally stable map-germ, so

that
∂

∂yi
◦F (i = 1, . . . , p) project to an F ∗Ep-generating set for MC . Choose a resolution

Eqp
∆−→ Epp

π−→MC −→ 0

such that π(ei) = [
∂

∂yi
◦ F ] (i = 1, . . . , p). Then the vector fields ηj =

∑p
i=1 ∆ij

∂

∂yi
(j = 1, . . . , q)(i.e., the columns of ∆) generate Θ(D) as an Ep-module.

Proof. The Ep-linear map
Epp −→ Γ(T (Cp, 0))

given by ei 7→
∂

∂yi
is an isomorphism of free Ep-modules; thus all that we need to do is to

see that it carries the relation module of the π(ei) onto the module of vector fields liftable
over F .

We have (A1, . . . , Ap) is a relation for
∂

∂y1
◦ F, . . . , ∂

∂yp
◦ F modulo im(dF ) iff

p∑
i=1

Ai ◦ F ·
∂

∂yi
◦ F ∈ im(dF )
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iff
p∑
i=1

Ai ·
∂

∂yi
is a liftable vector field,

as required. �

(3.13) Corollary. Let F : (Cn, S) −→ (Cp, 0) be infinitesimally stable, with n ≥ p. The
Ep-module of vector fields on (Cp, 0) tangent to the discriminant of F is free, of rank p.

As a demonstration of the power of Theorem 3.10 and Proposition 3.11, we give a simple
proof of a generalization of a theorem of Damon ([Da]).

Let f : (Cn, S) −→ (Cp, 0) be a map-germ of FST . Then we can choose elements of
EpS , projecting to a generating set of MC = EpS/df(EnS ), of the form

∂

∂y1
, . . . ,

∂

∂yp
, α1, . . . , αs,

with the αi ∈ mSEpS . Then

F (u, x) = (u, f(x) +
s∑
i=1

uiαi)

is an infinitesimally stable unfolding of f . Let φ and ψ be the inclusions of Cn and Cp into
Cn+s snd Cp+s, respectively. Let C and D denote the critical and discriminant sets of f
and C ′ and D′ those of F . Let p′ = p+ s and n′ = n+ s. Then β1, . . . , βp′ =

∂

∂y1
, . . . ,

∂

∂yp
,
∂

∂u1
, . . . ,

∂

∂us

project to a generating set of MC′ as an Ep+s-module, and are related to γ1, . . . , γp′ =

∂

∂y1
, . . . ,

∂

∂yp
,−α1, . . . ,−αs,

as in Theorem (3.11), i. e., φ∗βi − dψ ◦ γi ∈ dF (Ep
′

n′) ◦ φ for i = 1, . . . , p′. Let

Elp′
∆′

−→ Ep
′

p′
π′−→MC′ −→ 0

be a presentation with π′(ei) = βi. Then

Elp
∆−→ Ep

′

p
π−→MC −→ 0,

with ∆ij = ∆′
ij ◦ ψ and π(ei) = γi, is a presentation for MC . Thus

NRe · f = MC =
EpS

df(EnS )
∼=

Ep
′

p

im(∆′ ◦ ψ)
= NCD′,e · ψ

as an Ep-module, and im(∆′ ◦ ψ) = Θ(D′) ◦ ψ. This isomorphism then induces the
isomorphism of:
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(3.14) Theorem. With notation as above, we have an isomorphism of Ep-modules

NAe · f =
EpS

df(EnS ) + f∗Epp
∼=

Ep+sp

Θ(D′) ◦ ψ + 〈 ∂
∂y1

, . . . ,
∂

∂yp
〉 · Ep

= NKD′,e · ψ.

The notation NKD′,e ·ψ is Damon’s for the normal space to the action of the extended
KD′ -equivalence, see [Da] (CD′ is the subgroup of KD′ of elements leaving the domain of ψ
fixed). Damon proved this under the extra assumption that f was of finite A-codimension.
We only assume FST . In the finite A-codimension case, it follows immediately that the
Ae-codimension of f equals the KD′,e-codimension of ψ.

As another application, we look at the computation of the stability discriminant, which
is the set of points in the target at which a mapping is not infinitesimally stable. This
plays an important role in the study of topological equisingularity.

Continuing with the above notation, f is stable iff

(3.15) Θ(D′) ◦ ψ + 〈 ∂
∂y1

, . . . ,
∂

∂yp
〉 · Ep

is all of Ep+sp . But (3.15) is the image of the matrix ∆̃ formed by augmenting ∆ with
columns forming a basis for Cp. Then the Jacobian ideal of ∆̃, which is the ideal generated
by the s× s-determinants of the first s-rows of ∆, defines the stability discriminant.

(3.16) Example. Let f(x, y) = (x, y3+Q(x)y), with x = (x1, . . . , xn−2). A stable unfold-
ing of f is F (u, x, y) = (u, x, y3+uy+Q(x)y). Let (U,X, Y ) be the target coordinates. Let
g = (g1, . . . , gn−2), where gi = ∂Q/∂xi, and h = u+Q(x); note that both these functions
lift to functions of U and X: g(X) and h(U,X). Then

dF =

 1 0 0
0 1 0
y g · y 3y2 + h

 .
We calculate a discriminant matrix for MC′ relative to the generating set

e1 =


1
0
...
0

 , . . . , en =


0
...
0
1

 .
Fn = y3 + hy. First observe that, modulo dF (Enn), yen ≡ −e1, y2en ≡ −1

3hen, y
3en ≡

− 1
3hyen ≡

1
3he1 and y4en ≡ 1

9h
2en. Thus

Fn · e1 ≡ −(y4 + hy2)en ≡ 2
9h

2en,

Fn · en ≡ −2
3e1.
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Also we have the trivial relations

ei = −gi−1yen ≡ gi−1e1, 1 < i < n.

Thus we have

∆′ =

 Y −g 2
3h

0 1 0
− 2

9h
2 0 Y

 .
So the columns of ∆′ form a free En basis of Θ(D′). (A minimal generating set for MC′

as an F ∗En-module would be for example e1 and en, reflecting that there is a nonsingular
n − 2-dimensional surface of points in the target along which F is A-equisingular; the
middle n−2 columns are tangent to this surface). D′ is defined by det ∆′ = Y 2 + 4

27h
3 = 0

and D is defined by the restriction of this to u = 0, namely Y 2 + 4
27Q

3 = 0. We have a
representation

En+2
n−1

e∆−→ Enn−1 −→
En−1
n−1

df(En−1
n−1) + f∗(En−1

n−1)
−→ 0

where

∆̃ =

 Y −g 2
3Q 0 0

0 1 0 1 0
− 2

9Q
2 0 Y 0 1

 .
Thus the stability discriminant is the ideal generated by the n × n-determinants of this
matrix, i.e. 〈Y,Q, g1, . . . , gn−2〉En−1; the locus is just the locus of K-instability of Q, so
f is finitely A-determined if, and only if, Q is finitely K-determined. Its Ae-codimension
equals the C dimension of the cokernel of ∆̃, which is the Ke-codimension of Q.
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[Br] T. Bröcker, Differentiable germs and catastrophes, translated by L. Lander, London Math.

Society Lecture Notes Series 17, Cambridge University Press, 1975.

[Bru] J. W. Bruce, Functions on discriminants, Jour. London Math. Soc. 30 (1984), 551–567.

[BduPW] J. W. Bruce, A. duPlessis and L. Wilson, Discriminants and liftable vector fields, preprint.

[BR] D. A. Buchsbaum and D. S. Rim, A generalized Koszul Complex II, Trans. AMS 111 (1964),

197–224.

[Da] James Damon, A-equivalence and the equivalence of sections of images and discriminants, Proc.

Symp. on Singularities, Warwick University, 1989, Lecture notes in math., vol. 1462, Springer-

Verlag, New York, 1991, pp. 93–121.

[duP1] A. du Plessis, Characteristic varieties and developements of discriminants, in preparation.

[duP2] , Unfoldings and A-determinacy, in preparation.

[duP3] .

[duP4] .

[duP5] .

[duPWa] A. du Plessis and C. T. C. Wall.

[duPW1] A. du Plessis and L. Wilson, On right-equivalence, Math. Z. 190 (1985), 163–205.

[duPW2] , Right-symmetry of map-germs, Proc. Symp. on Singularities, Warwick University, 1989,

Lecture notes in math., vol. 1462, Springer-Verlag, New York, 1991, pp. 258–275.

[Ga] T. Gaffney, Polar multiplicities and equisingularity of map germs, Topology 32 (1993), 185–223.

[GG] M. Golubitsky and V. Guillemin, Contact equivalence for Lagrangean manifolds, Adv. Math.

15 (1975), 375–387.

[Gr] G. M. Greuel, Der Gauss-Manin Zusammenhang isolierter singularitäten . . . , Math. Ann. 214
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